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ABSTRACT

Recognizing where humans have their attention is a relevant and challenging task in

areas such as intelligent tutoring systems, human-robot interaction, or driver moni-

toring systems. However, thanks to modern research, publicly available AI can pre-

dict gaze direction with less than 10° of average angular error in unconstrained en-

vironments. This work proposes using a 3D gaze estimation model to categorize

drivers’ attention in a visual attention classification pipeline. Six simple machine

learning algorithms are trained to classify whether the driver’s gaze direction means

they are looking at relevant road elements or not, achieving ∼92% accuracy. A sim-

ple driver monitoring system is developed by implementing the pipeline. The vi-

sual attention classification models and the driver monitoring system are available at

https://github.com/VRI-UFPR/LWYG-drivers-attention.

Keywords: Gaze estimation. Driver monitoring. Computer vision. Machine learning.
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1 INTRODUCTION

As a result of the newest advancements, gaze estimation (estimating where humans are

looking) is becoming both more accessible and precise, for computer vision research has

come to a point where AI models – such as Gaze360 [1] and L2CS-Net [2] – can process

images and acquire data such as head pose and/or eyeball orientation to estimate gaze

directions in any environment, as shown in Figure 1.1.

Figure 1.1: A 3D gaze estimation model, L2CS-Net [2], predicts where chess players look.

Eye-tracking data is proven to be useful in many ways. It can be used to train

AI models to learn how to do tasks such as object referencing, decision-making, or

recognizing the context of an image [3].

Gaze data can also be used by machines in order to understand human atten-

tion [3]. For instance, Massato et al. [4] used existing eye-tracking technology in a

behavioural study to see where art specialists set their eyes when looking at paintings

(see Figure 1.2).

Hutt et al. [5] also proposed that intelligent tutoring systems should be able

to recognize when students are distracted. They trained a mind-wandering detector

by using contextual features such as gaze direction, the teaching subject, the student’s

score, and time spent on each lesson.

The idea of understanding human attention through gaze can also be applied

when monitoring drivers’ attention. In recent studies, Yang et al. [6] proposed that

a multi-task CNN can be trained to detect head pose and gaze direction to calculate

attention parameters such as distraction and drowsiness.

These two studies on detecting attention through gaze [5, 6] proposed to train

models that, before being able to classify attention, had to learn the task of gaze
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Figure 1.2: Eye-tracking software clusters gaze data points on artworks. Source: Massaro et al. [4]

estimation on their own. However, thanks to modern research, there are now 3D gaze

estimation models publicly available that predict gaze direction with less than 10° of

angular error [2], that could be used as tools to understand human attention. In the

same study in which it was introduced, Gaze360 [1] was tested to predict which product

a potential customer was looking at on a supermarket-style shelf, as shown in Figure

1.3.

Figure 1.3: Gaze360 predicts the product a participant is looking at. Source: Kellnhofer et al. [1]
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In a more recent study, Shi et al. [7] proposed the use of a 3D gaze estimation

model in driver monitoring systems, but their study was more focused towards identi-

fying the driver’s gaze region rather than classifying the driver’s attention. Their study

was also limited by the use of a gaze estimation model that has been outperformed by

novel methods.

1.1 OBJECTIVE

This work aims to test how a novel 3D gaze estimation model publicly available such as

L2CS-Net [2] performs as a tool to categorize human attention. As a case study, this

work takes on the task of classifying drivers’ attention, for it is a simple context yet an

important one – visual distractions such as telephone usage and texting increase the

likelihood of being involved in a car crash by 4-23 times [8].

A visual attention classification pipeline is proposed to obtain the driver’s gaze

direction from L2CS-Net and use it as input to train a visual attention classifier. In

total, six machine learning classification models were trained and evaluated. In order

to train them, the Driver Monitoring Dataset (DMD) was used, an annotated dataset

made by videos of 35 different drivers in 3 different camera angles [9].

1.2 STUDY OUTLINE

This study is structured into six chapters.

Chapter 2 provides an overview of the current literature on gaze estimation. It

covers gaze estimation techniques, their categories and the state-of-the-art; the machine

learning classification algorithms used in this study are also introduced. Chapter 3

presents an overview of driver monitoring systems. It defines driver monitoring and

reviews the different approaches used in the literature to detect driver distraction,

fatigue, and drowsiness.

Chapter 4 introduces the proposed visual attention classification pipeline. It

describes the methodology and the dataset used to train and evaluate the machine

learning classification models. Chapter 5 presents and discusses the results achieved

by using the gaze estimation model on the DMD dataset, compares the performance of

the six gaze direction classification models and discusses the implications of the results.

Finally, Chapter 6 summarises the study’s achievements, explores potential applications

for the visual attention classifiers, and suggests opportunities for future research.
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2 BACKGROUND

This chapter reviews the current literature on gaze estimation; techniques for acquiring

gaze direction are presented and categorized, and the state-of-the-art gaze estimation

model, L2CS-Net, is introduced. This chapter also introduces the machine learning

classification algorithms used in this study.

2.1 GAZE ESTIMATION

Gaze estimation is the task of determining where a person is looking at a given moment.

According to Hansen et al. [10], a person’s gaze is determined by the head pose (position

and orientation) and eyeball orientation. Head pose determines general gaze direction,

while eyeball orientation determines local and detailed gaze direction.

Gaze estimation models, therefore, need to (either directly or implicitly) model

both head pose and pupil/iris position. In this sense, gaze estimators can generally be

distinguished as feature-based or appearance-based [10].

2.1.1 Feature-based Gaze Estimation

Feature-based gaze estimation methods use extracted local features of the face, such as

contours, eye corners, and reflections from the eye. Most of these methods are based

on a 3D model of the eye – as illustrated in Figure 2.1 – and directly compute the gaze

direction based on a geometric eye model.

According to Zhang et al. [11], model-based gaze estimation techniques have

lower accuracy because they depend on accurately detecting eye features. To do this,

they require high-resolution images and homogeneous illumination, preventing these

methods from being used in real-world scenarios. Furthermore, model-based techniques

may not generalize well across different subjects due to variations in eye morphology.

2.1.2 Appearance-based Gaze Estimation

Appearance-based gaze estimation methods calculate 3D gaze direction directly from

images. These methods use machine learning algorithms to learn a mapping between

the input image and the corresponding gaze direction.

Doing this in unconstrained environments is a novelty. Previously, images used

to train appearance-based gaze estimation models were collected under controlled

laboratory conditions [11]. The challenge was not to make any assumptions regarding

the user, environment, or camera.
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Figure 2.1: A general model of the structures of the human eye, light, light sources, and projections.
Source: Hansen et al. [10]

It was not until 2015 that Zhang et al.[11] published the MPIIGaze dataset,

with more than 210,000 images taken in a span of three months with variable lightning

and background conditions by 15 participants on their laptops. Figure 2.2 shows a

sample of these images.

Figure 2.2: Sample images from the MPIIGaze dataset. Source: Zhang et al. [11]

But even with MPIIGaze, all gaze-related datasets were captured using either a

static recording setup or limited to a specific device – such as smartphones and tablets

[12] or laptops [11].

So another milestone in gaze estimation research is the release of the Gaze360

dataset by Kellnhofer et al. in 2019 [1]. As illustrated in Figure 2.3, the images were

captured using a 360° panoramic camera, where more than 230 participants were

instructed to look at a sign also captured by the camera.

This way, more than 130,000 images with 3D gaze annotations were captured

indoors and outdoors. The subjects were not constrained to look at a screen device,

so the dataset covers the entire horizontal range of 360°. Kellnhofer et al., using this

dataset, trained and made available their own gaze estimation model, using the same

name, ”Gaze360” [1].
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Figure 2.3: Gaze360 image acquisition setup. Source: Kellnhofer et al. [1]

2.1.3 L2CS-Net

As of 2022/2023, the best gaze estimation model publicly available is L2CS-Net [2]. It

takes as input an image and returns the predicted gaze direction angle as a pair of (yaw,

pitch) rotation angles.

The network was trained and validated on both MPIIGaze and Gaze360. It

outperforms the Gaze360 model by using a CNN architecture of 50 layers and testing

novel loss functions [2].

L2CS-Net is based on the backbone CNN ResNet [13], but has two fully con-

nected layers in order to regress each gaze angle (yaw, pitch) independently. Figure 2.4

illustrates its architecture. Instead of directly calculating continuous angle values (Yaw

angles range from -180° to +180° while pitch angles range from -90° to +90°), L2CS-Net

first splits these ranges into 90 different bins; for the size of the fully connected layers

is of 90.

When the Softmax function is applied to these layers, it normalizes them into

probability distributions [14], where each fc layer[i] is equal to the probability of

the gaze angle belonging to the bin of index i. As every p in probability distributions is

such that p ∈ [0,1] and the sum of every p equals 1, the value obtained from Equation

2.1 is a value ∈ [0,89], becoming a measure for angle.

unnormalized angle =
89∑
i=0

fc layer[i] ∗ i (2.1)

Equation 2.2 should be used in order to obtain a normalized value for each

output angle, for it converts the angle from [0, 89] bin units to [-180°, 180°] degrees.

gaze angle = unnormalized angle ∗ 4− 180. (2.2)
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When the network was trained, two separate loss functions were used for each

gaze angle: Cross-entropy loss for angle classification into bins and L2 loss for the

continuous value obtained through Equation 2.2. Both losses were backpropagated

through the network’s layers, fine-tuning them into estimating both gaze direction

angles.

L2CS-Net got its name from how it was trained and implemented: L2 loss +

Cross-entropy loss + Softmax layer = L2CS [2].

Figure 2.4: L2CS-Net architecture. Source: Abdelrahman et al. [2]

2.2 CLASSIFICATION ALGORITHMS

This section introduces the machine learning algorithms used to train the classification

models used in this study.

2.2.1 Decision Tree

Decision Tree classifiers are models that learn to take simple decisions inferred from

features of the training data [15]. A decision tree model resembles a directed graph

where each node represents a decision over features of the input data, and the leaf

nodes represent the result of the classification.

These models are trained by recursively splitting the training data into subsets

and grouping the values that have similar features. Once they are trained, Decision

trees are simple to understand, for each output of the model can be explained using

boolean logic by tracing the path in the graph, but they are prone to overfitting when

the training data is large and/or noisy, for the trees become too complex and do not

generalize the data well [15].

2.2.2 Random Forest

Random Forest classifiers combine multiple decision trees to improve the accuracy and

stability of predictions [16]. Multiple trees are trained using random subsets of the
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training data; in order to predict the class for the input, each decision tree makes a

prediction, and the final prediction is the majority vote of all the trees in the forest.

Although Random Forest classifiers are more robust than single Decision Trees, there is

still chance that the decision trees in the forest won’t generalize the data well, leading

to overfitting as well.

2.2.3 K-Nearest Neighbours

KNN classifiers are easy to understand and implement. To predict the class a given

input belongs to, it evaluates the k nearest points in the training data, and predicts that

the input belongs to the same class of the simple majority of these k points [17].

2.2.4 Support Vector Classifiers

Support Vector Classifiers find the function that separates the data by their classes

in a way that the distance between the points of different labels is maximized. When

the training dataset is not entirely separable by a function, some misclassifications are

penalized but allowed in order to find a function that best splits the data according to

their classes.

SVCs were initially designed to work only for linearly separable points, but

in 1992, the use of nonlinear kernel functions was proposed in order to have SVCs

separate nonlinearly separable points [18]. Examples of nonlinear kernel functions

include polynomial, radial basis function (RBF), and sigmoid.

2.2.5 Gaussian Naive Bayes

Gaussian Naive Bayes is a probabilistic machine learning algorithm based on the Bayes

theorem [19]. Using the training data as a sample, for every class, the algorithm

calculates the mean and variance for every input attribute of a point x that belongs to

the class; modelling a normal/Gaussian distribution of the features. It is called ”naive”

for it assumes that all features are independent [20].

P (x[i] | y = c) =
1√

2π ∗ variance2[c, i]
exp

(
−(x[i]−mean[c, i])2

2 ∗ variance2[c, i]

)
(2.3)

Equation 2.3 returns the probability of x belonging to class c according to the

value of its attribute x[i]. Multiplying the values of P (x[i] | y = c) for every i results

in the probability of x belonging to class c.

Calculating this value for every class c results in the probability of x belonging

to every class. The Gaussian Naive Bayes predicts x to be part of the class where

P (x | y = c) is the largest.
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3 RELATEDWORK

This chapter presents an overview of existing studies on driver monitoring systems.

It reviews the definition of driver monitoring, presents features a system can use to

evaluate drivers’ attention, and discusses relevant driver monitoring systems from the

literature.

3.1 DRIVER MONITORING SYSTEMS

Ortega et al. [9] define ”driver monitoring” as the analysis of parameters such as the

direction of gaze, head pose, fatigue/drowsiness, disposition of the hands, and more.

According to Manstetten et al. [21] , basic research activities on driver inattention

started around the year 2000, and the first driver monitoring system based on driving

performance was introduced in 2008. Sigari et al. [22] consider that driver monitoring

systems have two main challenges: measuring fatigue and measuring concentration.

When developing a driver monitoring system using a CNN, Yang et al. [6]

captured many parameters from the driver’s face – head pose, gaze direction, yawning,

and eye state analysis such as blink rate, blink duration, and eye open/close see Figure

3.1 – and used them all in a single multi-task CNN framework, DANet, bringing together

all the data to determine how distracted or drowsy the driver is.

Figure 3.1: A demonstration of the DANet. Source: Yang et al. [6]

In 1999, a study by Häkkänen et al. [23] confirmed that sleepiness increases

the average blink closure duration. Since then, monitoring systems can use an eyelid

aperture estimator developed by Ortega et al. [24] to detect blink patterns that indicate

microsleeping and other fatigue levels.

Some attention-monitoring systems use full-body images to detect distractions

such as interacting with passengers or grabbing items like water bottles or telephones
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[9]; a camera pointed at the driver’s hands could also tell whether the driver is paying

attention to what they are doing.

In a study similar to the present one, Shi et al. [7] used a CNN face detector to

detect the driver’s face and also proposed using a 3D gaze estimation model published

in 2017, Full-Face [25] , in order to obtain the driver’s gaze direction.

They gathered 4,477 different gaze directions from 30 drivers in simulated and

real environments. They classify gaze direction as ”normal driving”, ”looking at the

dashboard”, ”looking left”, or ”looking right” – as shown in Figure 3.2.

Figure 3.2: Classification of driver’s gaze region. Source: Shi et al. [7]

Shi et al.’s proposal is about using gaze estimation to classify the driver’s general

gaze region (forward, left, right or downwards), but this does not tell the whole picture

about the driver’s attention. Sure, when the driver’s gaze region is forward, the driver is

probably paying attention to the road, but the driver can look at relevant road elements

that are not directly forward. For instance, their KNN model classifies gaze directions

at the car’s centre console, passenger, and right rear-view mirror as ”looking right”. The

console and the passenger can be visual distractions, but the right mirror is not.

Their definition of ”visual distraction” is simply whether the driver was looking

forward or not. The present work differs from the study by Shi et al., for in this study,

”visual distraction” is defined as the state when the driver is not looking at any of the

road elements, such as the front road, rear mirrors, or left/right windows; broadening

the scope of visual distraction beyond Shi et al.’s definition.
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4 PROPOSAL

This chapter introduces the proposed method to obtain a visual attention classifier

to monitor whether the driver is visually distracted at a given frame. It presents the

dataset used for training and introduces the proposed 3-step pipeline used to train the

visual attention classifier and implement a simple driver monitoring system.

4.1 DRIVER MONITORING DATASET

The visual attention classifier is trained with gaze directions of images from driving

footage, with labels for when the driver is looking at road elements (windscreen, mirrors,

etc.) or not. For that, the Driver Monitoring Dataset [9] published by Ortega et al. in

2020 shall be used.

The DMD contains annotated footage not only of participants driving in a car,

but also of them sitting in a parked car, or driving in a simulator indoors. That’s because

the dataset covers many different actions, some of which would be dangerous for the

participants to do while driving in real-life conditions – texting, talking on the phone,

combing their hair, reaching for objects in the back seat, etc. Annotations include

”gaze on road”, ”driver is talking”, ”hands using wheel”, ”hand on gear”, ”objects in

the scene”, ”occlusion in cameras”, and driver actions such as ”texting”, ”phone call”,

”reach backseat”, and etc.

For each recording session, the dataset offers videos from three different angles

(body, hands, and face) in three different formats (RGB, depth, and infrared), as illus-

trated in Figure 4.1. There is footage of 35 different participants, and the videos range

from 1 to 8 minutes.

In this work, only footage from the RGB face camera is needed, as the visual

attention classifier will only use gaze data obtained from L2CS-Net output. And of

all annotations for distraction, only ”Gaze on Road” labels – looking road (LR) and

not looking road (NLR), see Figure 4.2 – shall be used as the expected value for

training the visual attention classifier for each frame.

4.2 A VISUAL ATTENTION CLASSIFICATION PIPELINE

This study proposes classifying the driver’s attention in a 3-step pipeline, as represented

in Figure 4.3. First, it acquires the region of interest of the image, which is the driver’s

face. Then a gaze estimation model predicts the driver’s gaze direction. Last but not

least, a visual attention classifier is used to analyze whether the gaze direction means

the driver is distracted or not.
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Figure 4.1: DMD camera setup for both real car and simulator scenarios. Source: Ortega et al. [9]

Figure 4.2: DMD footage examples for ”Gaze on Road” annotations. The image on the left is labelled as
LR while the one on the right is labelled as NLR. Source: Ortega et al. [9]

4.2.1 Face Detection

A face detection module based on RetinaFace [26] is used to crop the input image and

feed it to the 3D gaze estimator. However, only frames where the driver’s face can

be detected with a score of more than 95% are selected in order to get accurate gaze

directions from the estimation model and avoid misclassification of gaze direction.

When no such face is detected by the model – for reasons such as occlusion caused by

the driver’s hands or other objects in the car – then no image should not be given as

input to the gaze estimator. The driver monitoring system should ignore and tag as

”unable to decide” frames in which no person is identified.

4.2.2 3D Gaze Estimation

L2CS-Net is the gaze estimation model chosen for this work. It expects an image of

resolution (224, 224) pixels as input and returns the predicted gaze direction angle as a

pair of (yaw, pitch) rotation angles. Refer to Section 2.1.3 for more details.
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Figure 4.3: The proposed visual attention classification pipeline.

4.2.3 Gaze direction classification

Finally, the machine learning library ”scikit-learn” [27] is used to train algorithms such

as DT (Decision Tree), SVC (Support Vector Classifier) with Polynomial and RBF (Radial

Basis Function) kernels, KNN (K-Nearest Neighbours), RF (Random Forest), and GNB

(Gaussian Naive Bayes) – refer to Section 2.2 for more details.

The best model will be chosen as the visual attention classifier, taking (yaw,

pitch) gaze direction angles as input and returning whether the driver is in visual

distraction or not as a boolean value. The hyperparameters for each classifier are shown

in Table 4.1. If a hyperparameter is not defined, its default value in ”scikit-learn” is

used instead.

Table 4.1: Hyperparameters for each trained classifier.

Classifier Hyperparameters

RBF SVC kernel=’rbf’, gamma=’scale’

KNN n neighbors=30, metric=’euclidean’

Gaussian NB priors=None

Random Forest n estimators=100, criterion=’gini’

Polynomial SVC kernel=’poly’, gamma=’scale’, degree=3

Decision Tree criterion=’gini’, splitter=’best’
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5 RESULTS AND DISCUSSION

This chapter discusses the results of applying L2CS-Net on the DMD dataset, as graphs

linking gaze direction angles and distraction are displayed and analyzed. Training

results for the visual attention classification models are also presented in this chapter,

and the resulting simple driver monitoring system is introduced.

5.1 GAZE DATA ACQUISITION RESULTS

The results of applying the L2CS-Net on every frame from the DMD dataset can be

seen in Figure 5.1, as each gaze direction is labelled according to the value of ”Gaze on

Road” from the dataset annotations.

Notice that there are many times where directions labelled as NLR overlap

regions marked as LR even when the driver is looking forward (values close to 0+, 0).

This happens because when using all 730,637 frames collected from the dataset, the

footage includes situations where the participants are not really driving, but parked

and performing various actions such as combing their hair and other distraction-related

actions mentioned before, which may not be the best for classifying attention through

gaze. Using this dataset, the best classification model only achieved 89% accuracy.

Figure 5.1: Gaze data extracted from 730,637 frames of DMD videos. Blue dots represent
looking road(LR), while red dots represent not looking road(NLR).

That’s why another smaller set of gaze data was acquired to train the visual

attention classifiers by using only footage from real driving scenarios. Thirty-five

selected videos were used to obtain 209,108 frames where the participants were driving
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– more than 114 minutes of footage. From those, 206,170 could be processed by the face

detector (refer to Section 4.2.1) – generating a dataset more than 46 times larger than

Shi et al.’s mentioned in Chapter 3. This labelled subset of gaze direction data is also

available for future research.

Figure 5.2: Gaze data extracted from 206,170 frames of real driving DMD videos. Blue dots represent
looking road(LR), while red dots represent not looking road(NLR).

Figure 5.2 shows that labels are scattered much cleaner than before, and seem

to cluster naturally. On both opposite sides along the Yaw axis, however, it is hard to

judge whether the driver has their attention on the road. In this dataset, when looking

too far to the left or to the right, the driver can be talking to a passenger, checking

whether it is safe to change lanes, looking at a side-view mirror, or getting a glimpse of

something completely unrelated to road elements.

Although the data is plotted in a way that seems to be scattered and well

distributed, in more than 83% of the footage, frames are labelled as ”looking at road

elements”. The region around the centre (0, 0) is dense with LR-labelled dots.

It is also noticeable that when driving, distracted participants were primarily

looking at the radio system/infotainment or cell phones positioned at the same region

(negative Yaw values); while in videos where the participants are in a parked car, in the

first dataset, they can look at the steering wheel, dashboard, or at their laps.

5.2 CLASSIFICATION RESULTS

In total, six classifiers (Decision Tree, Polynomial SVC, Random Forest, Gaussian Naive

Bayes, KNN and RBF SVC) were trained using the smaller filtered dataset, and their

decision boundaries are shown in Figure 5.3. Out of the 206,170 gaze directions
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acquired from the DMD, 136,581 were used for training (25 videos) and 69,589 for

testing (10 videos).

Figure 5.3: Decision boundaries for all trained classifiers, ordered by their accuracy. Light blue areas are
classified as LR, while red zones are classified as NLR.

Even though the boundaries are different for each model, their general accuracy

score is somewhat close, ranging from 89% to 92%. It can be seen in Table 5.1 that the

RBF SVC classifier has the best general accuracy (92%), but it does not have the best

accuracy for predicting not looking road.
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Figure 5.4: Confusion matrixes for all trained classifiers, ordered by their accuracy. The testing subset
has 69,589 directions, where 11,291 are labelled as NLR and 58,298 are labelled as LR.

The DT, Polynomial SVC, and RF models have the worst general accuracy and

the worst NLR accuracy as well. Even though the Polynomial SVC has the best NLR

precision according to Table 5.1, it has the worst NLR accuracy of them all, for the data
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Table 5.1: Classifier comparison based on accuracy and precision for each label.

Classifier Accuracy ↑ NLR precision NLR accuracy LR precision LR accuracy

RBF SVC 0.9218 0.78 0.71 0.95 0.96

KNN 0.9208 0.78 0.71 0.95 0.96

Gaussian NB 0.9196 0.75 0.75 0.95 0.95

Random Forest 0.9173 0.77 0.69 0.94 0.96

Polynomial SVC 0.9075 0.79 0.58 0.92 0.97

Decision Tree 0.8947 0.68 0.66 0.94 0.94

is not polynomially separable with a degree of three. The decision boundaries for the

DT and RF classifiers in Figure 5.3 suggest overfitting as well.

All classifiers achieved a great LR precision score for a simple reason: the

vast majority of the LR-labelled gaze directions are located around the centre of the

graph, so any model that classifies values close to the centre as LR gets more than 90%

looking road precision.

The Gaussian Naive Bayes classifier is the most interesting of all models. It

has one of the best general accuracy scores, and Table 5.1 confirms that it has the best

accuracy for classifying NLR. According to the confusion matrix in Figure 5.4, it correctly

classified 8,506 NLR directions out of 11,291. It also shows that it is the most likely to

declare a gaze direction as NLR, classifying as visual distraction 8,506 + 2,805 = 11,311

out of the subset of 69,589 gaze directions used for testing.

By looking at its decision boundaries, the GNB also seems to be the best fit

for the visual attention problem, even outside the dataset’s bias. It chooses to classify

as LR only gaze directions near the centre of the graph, and everything that differs

from it is considered NLR. Therefore, it would classify gaze directions not seen before

in the training dataset – such as looking at the ceiling (high Pitch values) – as ”visual

distraction”, when the other two best classifiers (KNN and RBF SVC) would not, for

lack of drivers’ gaze direction looking up labelled as ”visual distraction”. The GNB’s

decision boundary can be explained by its design: it assumes that the distribution of

Yaw and Pitch for LR-labelled gaze directions are Gaussian, and because most of the LR

gaze directions are close around the centre, the variance of the distribution is low. As

values far from the centre have less probability of being in this Gaussian distribution,

they are classified as NLR.

Based on this discussion, it is reasonable to conclude that the Decision Tree,

Polynomial SVC, and Random Forest classifiers do not offer any advantages over the

other three classifiers. Therefore, the KNN, RBF SVC, and especially the GNB are the

ones recommended for classifying drivers’ attention, as they have been shown to be
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more suitable for the task. These three classifiers are made available for the use of other

researchers.

As mentioned in Section 5.1, however, the dataset’s bias of labelling gaze

directions to the right as visual distraction – as ”talking to the passenger” is a common

action – is reflected on every resulting classifier. Every classifier categorizes gaze

directions too far to the right (Yaw > 1) as NLR, while gaze directions to the left are

classified as LR – for there is no passenger to be looked at on the left.

5.3 A SIMPLE DRIVER MONITORING SYSTEM

By implementing the pipeline mentioned in Chapter 4 (refer to Section 4.2), to put the

visual attention classifier in use, a simple monitoring system was developed and made

publicly available in order to assist future researchers. For each frame, the driver’s face

is cropped, the gaze estimator processes the image, and the gaze direction is classified.

Using the GNB classification model, the video frame is captioned as ”Looking at road

elements” or ”Visually distracted” – see Figure 5.5.

Notice that when the face detector fails to recognize the driver, for there is no

driver in the image or they are occluded by other objects in the scene, the program can’t

classify the driver’s visual attention.

5.4 COMPARISON TO PREVIOUS STUDIES

Shi et al.’s [7] study mentioned in Chapter 3 used a gaze estimation model, FullFace

[25], in order to classify the driver’s general gaze zone. This gaze estimation model

was trained in 2017 using only the MPIIGaze dataset [11], before the release of the

Gaze360 dataset [1]. For that and other reasons, they could not properly differentiate

gaze directions far from the centre of the camera.

By using a gaze estimation model that outperforms the one used in Shi et al.’s

study, this work is able to differentiate some of the gaze directions that the previous

study could not. For instance, even though this study cannot differentiate looking at

the passenger from looking at the right mirror, it can tell apart the infotainment/radio

system from the passenger and right side mirror, when Shi et al.’s could not.

And by using the Driver Monitoring Dataset’s definition of ”looking at road

elements”, this study does not classify the driver’s gaze directions as just looking

forward or not, but takes on the task of classifying drivers’ attention to any relevant

road elements. Using the DMD also allowed this study to use more than 206 thousand

labelled gaze directions, a dataset more than 46 times larger than the one obtained by

the previous study.
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Figure 5.5: The driver monitoring system captions frames from a video by using the Gaussian Naive
Bayes visual attention classifier.
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6 CONCLUSION

This chapter concludes the study by summarising what it achieved. It also provides

possible applications for the classification models trained in this study. Finally, it

presents opportunities for future research on the use of gaze estimation in research on

drivers’ attention.

6.1 SUMMARY

3D gaze estimation models with less than 10° of angular error are already publicly

available, and this study used one to develop a pipeline to classify drivers’ visual

attention, training multiple models to classify drivers’ gaze direction angles as ”looking

at road elements” or not. The classifiers and a simple monitoring system are made

available to the general public.

The initial goal of testing L2CS-Net as a tool to understand human attention

in a case study for classifying driver’s attention was accomplished. By using this gaze

estimation model in the proposed visual attention classification pipeline, the complex

task of deciding whether a driver is visually distracted was reduced to classifying

points.

6.2 POSSIBLE APPLICATIONS

The resulting visual attention classifier can be used in real-life applications such as

research on drivers’ attention; or in a monitoring system embedded in a real car, to

warn the driver through sound cues that they must look where they are going. Modern

autonomous cars could also, under extreme conditions, take control of the vehicle when

the user that is manually driving happens to be visually distracted for too long.

6.3 FUTURE WORK

There is more to be explored regarding the idea of using gaze estimation models in

research on drivers’ attention. For instance, future work may be to analyze more footage

and recognize which regions drivers look at more often. During the development of

this work, DMD researchers started to label the dataset on where the driver is looking:

steering wheel, left mirror, rearview mirror, infotainment, etc.

One of the reasons why classifying attention was difficult when the driver was

looking at their surroundings was because the DMD included staged distractions such

as ”talking to passengers”, which biased the algorithms into classifying every glance
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to the right as ”distraction”. In this study, the location of the driver’s face in the image

was not used as a parameter for classifying their attention, for the participants in the

dataset had different heights; but in hindsight, it could be useful to separate glances to

the side-view mirrors from glances to the passenger. Future work could use the driver’s

location in the image as a parameter for classifying visual attention.

Still on the topic of differentiating passengers and glances to the right, future

work could evaluate whether a visual distraction classifier trained using other videos

would perform better. Future researchers could also map when a passenger is present,

for the driver can’t be distracted by a passenger if they are not in the car.

Other ML classification algorithms can be explored in the future, such as

gradient boosting and neural networks. In a quick test, the Python module ”auto-

sklearn” [28, 29] hints that it is possible to train a classifier with up to 94% accuracy

using the same dataset presented in chapter 5.

Finally, this work does not consider the scenario outside of the car to know

where the driver should be looking: when switching lanes, for instance, the driver is

supposed to be looking at their side, not just forward; and in a straight line, looking at

the sides for too long could be a sign of visual distraction. Future work could integrate

a dashboard camera pointing forward to understand its surroundings and classify the

driver’s attention even more accurately. Also, if researchers had access to both a camera

pointed to the front road and a skilled driver’s gaze directions, they could use them to

teach autonomous car systems to look where they are going.
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